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e-mail: Daniel.Mueller@astro.uio.no, peter@kis.uni-freiburg.de

2 Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern N-0315, Oslo, Norway
e-mail: Viggo.Hansteen@astro.uio.no

Received 8 March 2004; accepted 14 May 2004

Abstract. This work addresses the problem of plasma condensation and “catastrophic cooling” in solar coronal
loops. We have carried out numerical calculations of coronal loops and find several classes of time-dependent
solutions (static, periodic, irregular), depending on the spatial distribution of a temporally constant energy depo-
sition in the loop. Dynamic loops exhibit recurrent plasma condensations, accompanied by high-speed downflows
and transient brightenings of transition region lines, in good agreement with features observed with TRACE.
Furthermore, these results also offer an explanation for the recent EIT observations of De Groof et al. (2004) of
moving bright blobs in large coronal loops. In contrast to earlier models, we suggest that the process of catas-
trophic cooling is not initiated by a drastic decrease of the total loop heating but rather results from a loss of
equilibrium at the loop apex as a natural consequence of heating concentrated at the footpoints of the loop, but
constant in time.
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1. Introduction

Recent observations of the solar transition region and
corona, especially with the Solar and Heliospheric
Observatory (SOHO) and the Transition Region And
Coronal Explorer (TRACE), have shown that magnet-
ically closed structures in the upper solar atmosphere,
commonly referred to as coronal loops, exhibit intrinsi-
cally dynamic behavior. Even in quiescent, non-flaring
conditions, loops show strong temporal variability of emis-
sion in UV spectral lines and substantial plasma flows.
An overview of observations of the temporal variabil-
ity of active region loops with the Coronal Diagnostic
Spectrometer (CDS) is given by Kjeldseth-Moe & Brekke
(1998). They report significant changes of coronal loops
over a period of one hour, in particular seen in emission
lines in the temperature range between T = 1− 5 · 105 K.
This variability is accompanied by large Doppler shifts,
typically around v = 50 − 100km/s. Recent observations
with CDS and the Extreme ultraviolet Imaging Telescope
(EIT) with high temporal cadence (Fredvik 2002, private
communication, De Groof et al. 2004) furthermore reveal
spatially localized brightenings in coronal loops, moving
rapidly down towards the footpoints of the loops. The fact
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that coronal loops can undergo rapid evacuation has been
known for decades: Levine & Withbroe (1977), e.g., re-
port Skylab spectroscopic observations, compatible with
“dramatic evacuation” of active region loops triggered by
rapid, radiation dominated cooling. A detailed study of
“catastrophic cooling” and evacuation of quiescent coronal
loops observed with the TRACE instrument is presented
by Schrijver (2001). He analyzes image sequences taken
in different spectral passbands and finds that loop evac-
uation occurs frequently after plasma in the upper parts
of the loops has cooled to transition region or lower tem-
peratures. The cooling process is often accompanied by
emission in Lyα and C IV (154.8nm), developing initially
near the loop top. Thereafter, cool plasma is observed to
slide down on both sides of the loop, forming clumps which
move with velocities of up to 100km/s. The downward ac-
celeration of these plasma clumps as inferred from these
observations is significantly less than the gravitational ac-
celeration on the solar surface. According to the observa-
tions of Schrijver (2001), this process of dramatic cooling
and evacuation is a rather common one. Further observa-
tional evidence of “blobs” of plasma falling down towards
the solar surface along magnetic field lines is presented by
De Groof et al. (2004), based on high cadence time series
of simultaneous EIT (30.4nm) and Big Bear Hα data.
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In this paper, we present numerical models of coro-
nal loops which exhibit a wide range of dynamics using
a very simple heating function that is exponentially de-
creasing with height, but constant in time. A key feature
of these models is the recurrent formation of plasma con-
densations, followed by loop evacuation, as described in
Müller et al. (2003, referred to as Paper I hereafter), which
offers a unifying explanation for different aspects of recent
observations.

2. Numerical model

In this work, we use the same numerical model as in
Paper I, and the reader is referred to Müller et al. (2003)
and Hansteen (1993) for details. Our code solves the one-
dimensional time-dependent hydrodynamic equations for
mass, momentum and energy conservation, coupled with
the ionization rate equations for several elements and self-
consistent radiative losses. The plasma is assumed to be ef-
fectively thin, and the radiative losses are due to collisional
excitation of the various ions comprising the plasma, in
addition to thermal bremsstrahlung. Thermal conduction,
radiative losses and a coronal heating term are included in
the energy equation. In the radiative losses the elements
hydrogen, helium, carbon, oxygen, silicon, neon, and iron
are included. While some of the metals are treated by
assuming ionization equilibrium and then deriving an a

priori radiative loss curve as a function of electron tem-
perature, radiative losses from the ions specifically men-
tioned in this study, i.e. losses from hydrogen, helium,
carbon and oxygen, are computed consistently with full
time-dependent rate equations. We consider a loop of low-
β plasma and assume that the loop has a constant cross
section.

2.1. Loop heating

We parameterize the energy input into the coronal loop
by specifying the energy flux at the footpoints of the loop,
Fm0, and assuming a mechanical energy flux that is con-
stant up to a height z1 and then decreases exponentially
for z ≥ z1 as

Fm(z) = Fm0 exp[−(z − z1)/Hm] (1)

with a damping length Hm. In the models presented be-
low, we will vary Hm between 2 and 12.5Mm for a loop of
100Mm length. For the mechanical energy flux we use
Fm0 = c · 150 W/m2 with the normalization constant
c = 1/(1 − exp[−(L/2 − z1)/Hm]) and set z1 = 1.75Mm.
The normalization constant ensures that the total energy
input into the loop is the same, irrespective of the damp-
ing length Hm. The heating rate, i.e. the energy deposition
per unit time and unit volume, is given by the divergence
of the energy flux, Qm = −∇Fm. Fig. 1 displays graphs
of the heating rate for different values of the damping
length, Hm. With the damping length Hm we can control
whether the heating is concentrated near the footpoints
or more evenly distributed along the loop.

Fig. 1. Prescribed heating rate for different values of the
damping length: Hm = 2 Mm (dotted), Hm = 3 Mm (solid),
Hm = 5 Mm (dashed), and Hm = 6 Mm (dash-dotted), and
Hm = 12.5 Mm (long dashes, heating function for static initial
model). The total heat input into the loop is the same for all
cases.

An exponentially decaying heating function was first
suggested by Serio et al. (1981) and seems to be supported
by recent observations (Aschwanden et al. 2000, 2001) as
well as by numerical simulations of (Gudiksen & Nordlund
2002).

2.2. Initial state

The coronal loop model studied here has a total length of
100Mm, composed of a semicircular arch of 98Mm length
and a vertical stretch of 1 Mm length at each end. A static
initial state is obtained by prescribing a large energy dis-
sipation length of Hm = 12.5Mm, which results in a loop
apex temperature of T = 6.8 · 105 K. The temperature
along the loop of the initial state is plotted in Fig. 2.

3. Plasma condensation due to thermal instability

For very short damping lengths of the heating function so-
lutions with a hot loop apex may no longer exist due to the
insufficient energy supply to the center, i.e. the top of the
loop, as shown by Antiochos et al. (1999), Karpen et al.
(2001) and Müller et al. (2003). In this case, a thermal
instability occurs and leads to a runaway cooling process,
also called catastrophic cooling, accompanied by plasma
condensation (cf. Paper I for details). Unless this con-
densation region is gravitationally supported, for example
by means of a dip in the magnetic field lines, to main-
tain a stable prominence-like state, such a configuration
is unstable and the dense condensation region eventually
moves down the loop legs and drains through the foot-
points. The depleted loop then reheats quickly as its heat
capacity is very low (at this stage there is much less mass
in the loop but the heating remains constant) and is filled
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Fig. 2. Temperature along the coronal loop. Initial state (solid
line, Hm = 12.5 Mm) and stable solution for Hm = 6 Mm
(dotted line).

again by chromospheric evaporation. Exactly how this cy-
cle of plasma condensation, draining, and chromospheric
evaporation is realized depends strongly on the spatial de-
pendence of the energy deposition.

In Paper I, we studied the physical processes leading
to this evaporation–condensation cycle and its applica-
tion to small (L = 10Mm) transition region loops, which
can just barely be spatially resolved with the currently
available instruments. This work focuses on plasma con-
densations in longer coronal loops (L = 100Mm), where
the same process can induce significantly stronger flows
and greater variations in the spectral signature, due to
the longer acceleration phase along the loop. More gener-
ally, the aim of this paper is also to work out the different
types of loop evolution that result from different damping
lengths of the heating function.

It is interesting to note that a time-dependent evo-
lution for time-independent heating over short damping
lengths has already been described in a different context
by Hearn et al. (1983) and Korevaar & Hearn (1989).
However they applied their results not to solar coronal
loops, but to open coronal regions surrounding hot stars.

Cyclic evolution of coronal loops was studied for the
first time by Kuin & Martens (1982). In their semi-
analytical model, they treated the coronal loop as an in-
tegrated system, coupled to the underlying chromosphere.
A comparison of their work with our hydrodynamical sim-
ulations is given in Paper I.

4. Results

4.1. Different types of loop evolution

For large damping lengths (Hm ≥ 6 Mm) and a prescribed
energy flux as described in Sect. 2.1, a stable, static loop
solution is attained. Fig. 2 shows the temperature along
the loop for Hm = 6Mm, which has a mean tempera-

Fig. 3. Evolution of mean temperature, 〈T 〉, as a function of
time, for four different damping lengths of the heating func-
tion: Hm = 2 Mm (dotted), Hm = 3 Mm (solid), Hm = 5 Mm
(dashed), Hm = 6 Mm (dash-dotted). Cf. Sect. 4.1. For com-
parison, the long-dashed line shows 〈T 〉(t) for a loop model
where the heating is switched off at t = 0.

ture of 〈T 〉 = 5.3 · 105 K.1 For shorter damping lengths,
when the heating is more concentrated at the footpoints,
the loop loses its thermal equilibrium and exhibits a dy-
namic evolution. Fig. 3 shows the mean temperature, 〈T 〉,
of a L = 100Mm loop as a function of time for damping
lengths of Hm = 2, 3, 5, and 6 Mm.

We find that for 2.5Mm < Hm < 6Mm, the loop
shows a periodic variation of 〈T 〉 due to the evaporation–
condensation cycle as described in Paper I. For even
shorter damping lengths (Hm ≤ 2.5Mm), the evolution of
〈T 〉 is irregular and shows intermittency of hot phases and
strongly fluctuating cool phases. This type of intermittent
behavior is well-known from chaotic non-linear systems.

For comparison, Fig. 3 displays also 〈T 〉(t) for a loop
model where the heating is switched off at t = 0 (long-

dashed line). In this case, the loop plasma simply drains
on both sides of the loop with flow speeds of v < 15 km/s,
and the loop cools down to chromospheric temperatures
without any plasma condensation forming.

Let us examine the different types of dynamic so-
lutions in more detail to see which phenomena accom-
pany the condensation process. In Fig. 4, we plot space-
time diagrams of the loop temperature, T (z, t), for Hm =
2, 3, 5Mm. The left and the center plot show two different
kinds of recurrent formation of plasma condensations:

In the first case (Hm = 5Mm), one condensation re-
gion forms at the loop apex and is then accelerated on
its way down, resulting in flow velocities in the wake of

1 Throughout this paper, the mean values are defined as the
average quantities over the region of the loop which lies above
the transition region, bounded by the points where the tem-
perature crosses T = 105 K in both loop legs (the exact choice
of this cut-off value does not significantly influence the results
and could be set to any temperature T 2 · 104 K).
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Fig. 4. Evolution of the temperature along the loop, T (z, t), for three different damping lengths of the heating function:
Hm = 5 Mm (left), Hm = 3 Mm (center), Hm = 2 Mm (right). The loop footpoints are at z =0 and 100 Mm, the apex is at
z =50 Mm.



Müller et al.: Dynamics of solar coronal loops II 5

the falling plasma blob of up to v ≈ 100km/s. When this
condensation region encounters the transition region near
the loop footpoint, it is strongly decelerated by the pres-
sure gradient of the underlying plasma and the velocity
profile forms a shock front. As the compression is approx-
imately adiabatic, this leads to a transient heating of the
transition region plasma.

The direction in which the blob starts to move is de-
cided by small asymmetries of the pressure around the
loop apex. A small increase of the deposited energy in one
loop leg (e.g. 1%) is sufficient to trigger a motion of the
blob in the opposite direction. In Sect. 4.4, we will dis-
cuss the velocity profiles of the flow in more detail and
point out a possible connection to the recent observations
of falling plasma blobs by De Groof et al. (2004).

The center plot of Fig. 4 shows the second type of re-
current condensations which occurs if the damping length
is slightly reduced with respect to the first case (Hm =
3Mm). Here, two condensation regions form simultane-
ously and then drain down both loop legs. We note that,
in agreement with the results obtained in Paper I for short
loops, the period of the condensation cycle decreases with
decreasing damping length as the loss of equilibrium due
to insufficient heating of the upper part of the loop occurs
sooner.

The right panel of Fig. 4 shows the most complex evo-
lution of this set of numerical experiments: As the heat-
ing is even more concentrated towards the footpoints, the
evolution of temperature along the loop with time re-
flects the persistent battle between loop heating and ra-
diative cooling: The loop first cools down from its ini-
tial state to T ≈ 1.1 · 105 K and forms two condensa-
tion regions at t = 8 000 s (≈ 2.2h). After these have
drained, the loop starts reheating. Due to the concentra-
tion of the heating to low heights, however, not enough
energy is deposited in the upper part of the loop to pre-
vent it from repeated radiative cooling and condensation
at t = 12 000s. At t = 19 000 s, the loop recovers from its
catastrophic cooling and enters a quiet, warm phase, dur-
ing which the flow speed does not exceed v = 16km/s. At
t = 25 000s, a new instability sets in and leads to the for-
mation of two new condensation regions whereupon flow
speeds of up to v = 95km/s are reached. The reflections
of the shock fronts meet near the loop apex and yield to
a transient temperature increase there. At t = 30 000s, a
new phase of evolution starts: small condensation regions
are recurrently formed in one leg of the loop, but due to
the footpoint-centered heating function, the loop does not
reach temperatures of more than T = 3.9 · 105 K before
collapsing again. At t = 54 000s, the loop enters a periodic
phase where condensation regions are recurrently formed
in the right loop leg.

How long the different phases of loop evolution last is
dependent on small variations in the radiative loss rate.
We observed “chaotic” evolution of the loop for the en-
tire duration of the longest simulation run (2 ·105 s) when
including the non-equilibrium ionization of only hydrogen
and helium, while the loop reached a periodic solution at

Fig. 5. Mean temperature, 〈T 〉, of the loop, as a function of
mean pressure, 〈p〉, for a loop of total length L = 100 Mm.
Dotted : Hm = 2 Mm, solid : Hm = 3 Mm, dash-dotted : Hm =
6 Mm.

t = 54 000s (as described above) when also accounting for
the non-equilibrium ionization of carbon and oxygen.

4.2. Classification of loop evolution

One way of representing the temporal evolution of coronal
loops is in terms of phase diagrams in 〈p〉 − 〈T 〉 space.
Fig. 5 shows such a phase diagram for a static loop (Hm =
6 Mm, dash-dotted), a periodically condensing loop (Hm =
3 Mm, solid), and an irregular loop (Hm = 2Mm, dotted).
We see that the stable loop approaches a fixed point in
〈p〉 − 〈T 〉 space, while the periodically condensing loop
traces out limit cycles. On the other hand, the irregular
loop exhibits a pattern that is composed of a multitude of
small intersecting paths, occasionally interrupted by larger
cycles corresponding to the temporarily stable phases of
the loop.

4.3. Where in a coronal loop do condensation regions

form?

In the beginning of the cooling process, the evolution of
the temperature as a function of loop length is very similar
for the two cases of Hm = 3Mm and Hm = 5Mm. This
raises the question why two condensation regions form in
the wing of the loop in one case and only one central
condensation region in the other case, where the heating
is less concentrated towards the footpoints.

4.3.1. Some consideration on the energetics

In order to better understand the formation of the con-
densation region it is also helpful to study the deposition
and transport of the energy. If the ratio of the damp-
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ing length to the loop length is large, stable coronal loops
reach the maximum temperature near the loop top. In con-
trast, stable loops with a smaller ratio of damping length
to loop length reach the peak temperature well below the
apex and have a rather flat temperature profile in the
central part of the loop. For instance, a stable 100 Mm
long loop with Hm = 6Mm reaches a maximum tempera-
ture of 5.9 · 105 K some 16Mm above its footpoints, while
the central 80Mm, i.e. most of the loop, show only a 6%
change in temperature, with a local temperature minimum
of 5.6 · 105 K at the apex. In this model, the loop top is
not predominately heated by the mechanical heating as
defined in Eq. (1). The rapid exponential decrease of the
heating can sustain high coronal temperatures only up
to some 10Mm height above each footpoint. Above that
height the plasma is mainly heated by heat conduction. In
an equilibrium situation this leads to a temperature dip at
the loop apex. As the heat conduction is efficient at high
temperatures the resulting temperature profile is rather
flat in the upper part of the loop.

If the heating is more and more concentrated to the
footpoints (by decreasing Hm), the peak temperature be-
comes smaller and occurs at lower heights. This reduces
the heat input through heat conduction into the upper
part of the loop, and finally the heat conduction can no
longer balance the radiative losses and catastrophic cool-
ing sets in. This clarifies why the catastrophic drop in tem-
perature can set in over a very wide range of the loop, basi-
cally in the whole region between the temperature maxima
(cf. middle and right panel of Fig. 4 and upper left panel
of Fig. 6).

4.3.2. Off-center formation of condensation regions

The upper left panel of Fig. 6 shows the temperature pro-
files of the Hm = 3 Mm loop for five different timesteps.
In the first timestep, t = 30 000s, the loop is already in
the cooling phase, and the temperature decreases with
time throughout the central part of the loop. The cool-
ing is dominated by radiation, with total radiative losses of
Lr = Φ(T )·ne ·nH ≈ Φ(T )·n2

e. The radiative loss function,
Φ(T ), is determined by the ionization (non)equilibrium of
the model atoms included in the calculation and is there-
fore time-dependent. However, if the ionization of the loop
plasma does not depart too strongly from equilibrium, the
radiative losses peak around T ≈ 2 · 105 K, as shown in
the upper right panel of Fig. 6. This means that plasma
of a given electron density cools more efficiently at, e.g.,
T = 2 ·105 K than at T = 4 ·105 K. On the other hand, the
density enters quadratically into in the radiative loss func-
tion, so that a local density enhancement anywhere leads
to a strongly increased cooling. If we now concentrate on
the timestep t = 31 000s (dotted line) and compare the
different panels on the left side of Fig. 6, we see that the
total radiative losses have developed two local maxima
in the wings of the loop, which subsequently lead to local
density maxima at t = 33 000s (dash-dotted line). This ini-

tiates the formation of two condensation regions, as seen
by the drastic density increase at later timesteps. At the
earlier time t = 31 000s, however, these local maxima are
not yet accompanied by local density maxima and arise
at a temperature of T ≈ 3 · 105 K (right center panel of
Fig. 6), which is not the location of the maximum of the
radiative loss function, Φ(T ). The total radiative losses,
Lr ≈ Φ(T ) · n2

e, however, peak here and hence lead to the
formation of lateral condensation regions. The lower right

panel of Fig. 6 shows the strong density decrease towards
the cooler center of the loop which prevents the formation
of a central condensation region.

4.3.3. Formation of central condensation regions

We now compare the results obtained for a damping length
of Hm = 3Mm with those for Hm = 5Mm. In the up-

per left panel of Fig. 7, the temperature profiles of the
Hm = 5Mm loop for six different timesteps are plotted. As
in the previous case, the loop is in its cooling phase, with
a local temperature minimum at the loop apex, and cools
fastest around the apex. In contrast to the Hm = 3 Mm
case, however, the density gradient, ∂ne/∂z, near the apex
is significantly shallower than in the previous case. This
is due to the larger damping length which means that a
larger fraction of the energy is dissipated higher up in the
loop. 2 Therefore, a local maximum of the total radiative
losses forms at the loop apex at t = 22 000s (middle left

panel, dotted line). The middle right panel displays the to-
tal radiative losses, Lr, as a function of temperature, and
it is seen that for T < 4 · 105 K, Lr(T ) increases monoton-
ically with decreasing temperature. Consequently, a local
density maximum forms at the loop apex at t = 26 000s
(lower left panel, dash-dotted line) and evolves by catas-
trophic cooling into a condensation region.

4.4. Formation of a shock front

In a hydrostatic configuration, the gravitational force act-
ing on the plasma is balanced by the pressure gradient. As
an illustration of a temporarily static phase of the coronal
loop with Hm = 3 Mm, we plot in Fig. 8 (upper left panel)
the component of the gravitational acceleration parallel to
the loop, g‖(z), and the acceleration due to the pressure
gradient, ∇p(z)/ρ(z), along the coronal part of the loop at
t = 32 000s. It is seen that these two quantities compen-
sate each other, and due to this equilibrium, the plasma
in the loop is nearly static (the velocity is displayed in the
upper right panel).

At t = 34 400s, however, a loss of equilibrium has oc-
curred and the gravitational force is no longer balanced
by the pressure gradient (lower left panel): In the central

2 The larger damping length also results in a higher temper-
ature in general. When the cooling phase sets in, the Hm =
5 Mm loop has a maximum temperature of T = 5.8 · 105 K
compared to T = 5.2 · 105 K for the Hm = 3 Mm loop (cf. also
the mean temperatures plotted in Fig. 3).
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Fig. 6. Formation of two simultaneous, lateral condensation regions for Hm = 3 Mm. Left panels, as functions of loop length: loop
temperature (top), total radiative losses (middle), electron density (bottom). Right panels, as functions of loop temperature:
radiative loss function (top), total radiative losses (middle), electron density (bottom). The following timesteps are plotted:
t = 30 000 s (solid), t = 31 000 s (dotted), t = 32 000 s (dashed), t = 33 000 s (dash-dotted), t = 34 000 s (dash-dot-dotted). The
right panels display only data of the central part of the loop, between the two vertical lines shown in the upper left panel, for
the first 4 timesteps. In some cases (dashed and dash-dotted curves in the middle and lower right panels) two branches are seen
because of a slightly different evolution of the two loop legs.

part of the loop, the pressure gradient has dropped to very
small values, while close to the footpoints, it is more than
an order of magnitude higher than the gravitational accel-
eration. The reason why ∇p becomes much smaller in the
central part of the loop than in hydrostatic equilibrium is
the drastic decrease of the temperature (cf. Fig. 6, upper

left panel) which causes a strong decrease in the pressure.
This explains the velocity profile seen in the lower right

panel: In the central part of the loop, the plasma is acceler-
ated to velocities very close to the free-fall speed, indicated
by the dashed line, and then strongly decelerated in the
lower parts of the loop, resulting in a characteristic shock
profile (Positive values of v denote a flow in the positive
z-direction. A downflow in the left loop leg (z < 50Mm)
is thus characterized by velocities v < 0, while a downflow
in the right loop leg (z > 50Mm) has velocities v > 0.).

4.5. Velocity profiles and acceleration of the

condensation region

In order to compare our results with the velocities and ac-
celerations deduced from observations of “moving blobs”
in coronal loops, we concentrate in this section on the
falling condensation region around t = 30 000 s of the sim-
ulation run with Hm = 5Mm.

Fig. 9 shows the velocity profile for t = 31 200 s (solid
line) and a velocity profile corresponding to a free-fall
of a test particle along the loop, which has a height of
h = 33.2Mm (dashed line). The maximum of the free-
fall velocity is vmax =

√
2gh = 135km/s. Comparing

the free-fall velocity profile with the velocity in the right
half of the loop, it is seen that from z = 50 − 70Mm
the flow is faster than free fall, while it is slower for
z = 70−100Mm. The dotted line displays the local sound
speed; from z = 60 − 65Mm, the flow is supersonic. The
fact that vapex = 50km/s immediately shows that there is
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Fig. 7. Formation of a central condensation region for Hm = 5 Mm. Left panels, as functions of loop length: loop temperature
(top), total radiative losses (middle), electron density (bottom). Right panels, as functions of loop temperature: radiative loss
function (top), total radiative losses (middle), electron density (bottom). The following timesteps are plotted: t = 20 000 s (solid),
t = 22 000 s (dotted), t = 24 000 s (dashed), t = 26 000 s (dash-dotted), t = 28 000 s (dash-dot-dotted), t = 30 000 s (long dashes).
The right panels display only data of the central part of the loop, between the two vertical lines shown in the upper left panel,
for the first 5 timesteps.

a force acting on the loop plasma, which turns out to be
the pressure force originating from the pressure difference
between the wake of the moving condensation region and
the rest of the loop behind the condensation region, which
is located at z = 85Mm in this plot.

In Fig. 10 we plot the velocity and acceleration of the
center of the condensation region as a function of time. For
this purpose, the condensation region is defined as the in-
terval in which the temperature drops below T = 105 K
(alternatively, a threshold for the density or the radiative
losses could be used). The increasing velocity in the left
half of the upper panel shows how the blob is being accel-
erated up to v = 33km/s. It can be seen in the lower panel
that for t < 29 500s, the acceleration is only a little smaller
than g‖, i.e. the free-fall case. After t = 30 600s, however,
the pressure of the compressed plasma underneath has
become so large (cf. Sect. 4.1) that the blob is now effec-
tively decelerated. At t = 31 140s, the blob stops and even
bounces 1 Mm upwards before falling again. After a sec-
ond deceleration phase the blob drains through the loop’s

footpoint at t = 32 840s. The maximal acceleration of the
blob during its fall is a = 54m/s2.

It has to be stressed that our model is one-dimensional,
so that in reality the deceleration process may not be as
vigorous as in the simulation described here. If the mag-
netic field is weak, the enhanced pressure of a region of
dense plasma will distort the magnetic field which can lead
to a lateral expansion of the dense plasma and a storage
of energy in the surrounding plasma and magnetic field
(Athay & Holzer 1982). Mackay & Galsgaard (2001), on
the other hand, carried out two-dimensional simulations of
the evolution of a density enhancement in a stratified at-
mosphere and find that a sufficiently strong magnetic field
enables the density enhancement to maintain its shape as
it falls, and indeed results in the dense blob rebounding
several times.

The deceleration of the plasma blob in our model is
caused by the same mechanism as proposed by Schrijver
(2001) and yields a blob acceleration which is significantly
lower than solar gravity and is consistent with the values
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Fig. 8. Formation of a shock front for Hm = 3 Mm.
Gravitational acceleration, g‖(z) (dotted), and acceleration due
to the pressure gradient, ∇p(z)/ρ(z) (solid) for t = 32 000 s
(top row) and t = 34 400 s (bottom row). In the lower right

plot, the free-fall velocity profile is indicated by a dashed line.

Fig. 9. Comparison between the velocity profile for Hm =
5 Mm at t = 31 200 s (solid line) with the free-fall velocity
from the loop apex at 50 Mm to the right footpoint at 100 Mm
(dashed) and the local sound speed at t = 31 200 s (dotted line).

of a = 80 ± 30m/s2 reported by Schrijver (2001). The
maximal blob velocities obtained from our simulations are
smaller than the maximal velocities of up to 100 km/s re-
ported by Schrijver (2001) and 60 − 110km/s (De Groof
et al. 2004), while the maximal flow velocities we obtain
(vmax = 75km/s for Hm = 5 Mm, vmax = 74km/s for
Hm = 3Mm, and vmax = 128km/s for Hm = 2Mm)
are of the same order. In our simulations, the highest flow
speeds are reached in the wakes of the falling plasma blobs.
However, increasing the loop length results in a longer ac-
celeration path, so that higher blob velocities are obtained
for loops longer than 100Mm. Further work on a compar-
ison with observational data is in progress.

Fig. 10. Velocity (top) and acceleration (bottom) of the con-
densation region for Hm = 5 Mm. The blob is accelerated by
gravity and then slowed down by the pressure of the com-
pressed transition region plasma underneath. The dashed line

in the lower panel shows the effective gravitational accelera-
tion, g‖, at the respective position of the blob.

4.6. Spectral signature of catastrophic cooling and

downflows

As our numerical code consistently solves the atomic rate
equations for different atomic species, we can calculate the
emission of a large number of coronal and transition re-
gion spectral lines including the effects of non-equilibrium
ionisation. In this context, the emission in the lines of
C IV (154.8nm) (formation temperature Tf ≈ 105 K) and
O V (63.0 nm) (Tf ≈ 2.2 · 105 K) is of particular interest
since the 160nm passband filter of TRACE is dominated
by C IV emission, and the OV line is frequently observed
with SOHO/CDS. We analyze the simulation run with
Hm = 5Mm and focus on the same period that was dis-
cussed in the previous section.

In Fig. 11 we plot the intensities and mean Doppler
shifts, 〈vD〉, for C IV (154.8nm) and OV (63.0 nm). Both
quantities are integrated over the right half of the loop,
excluding the footpoints, and the Doppler shifts are calcu-
lated as seen from above and converted to velocity units.

It is seen in the upper panel that the blob brightens
strongly in both spectral lines while falling, and reaches
its maximal intensity shortly before draining through
the footpoint. The maximal Doppler shifts occur around
t = 30 500s, when the blob reaches its maximal velocity.
The maximal Doppler shifts are 〈vD〉 = 25km/s for C IV

(154.8nm) and 〈vD〉 = 22km/s for OV (63.0 nm). Both
lines are redshifted due to the blob’s motion towards the
solar surface. Larger maximal Doppler shifts would result
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Fig. 11. Variation of total intensity (top) and mean Doppler
shift (bottom) due to the falling condensation region, integrated
over the right half of Hm = 5 Mm loop. The solid line displays
C IV (154.8 nm), the dashed line O V (63.0 nm).

Fig. 12. Line profiles of C IV (154.8 nm) and O V (63.0 nm)
during the fall of the condensation region (Hm = 5 Mm) as
seen from above. The flow towards the solar surface results in
a redshift of around 10 km/s and the emission stops abruptly
when the condensation region drains through the footpoint.

if no averaging over the entire right half of the loop was
performed.

To visualize the variation of line shifts and intensity
with time, we plot in Fig. 12 line profiles of C IV (154.8nm)
and O V (63.0 nm) for different points of time during the
fall of the condensation region. It is seen that the line pro-
files are redshifted as the blob falls while the line intensity
increases (cf. Fig. 11).

The Doppler shifts that would be measured in these
lines will of course depend on the aspect angle that loop
is viewed at. In order to calculate Doppler shifts which
can directly be compared with, e.g., measurements with

the CDS instrument on SOHO, one needs to consider not
only the spatial resolution of the instrument, but also the
finite temporal resolution due to the raster scan process.
Further work is being carried out which will address these
issues and present simulated raster scans of dynamic loops
in different spectral lines.

For an overview of temperature, velocity and emission
for a small part of the simulation run with Hm = 2 Mm,
Fig. 13 shows a cutout from Fig. 4 (right panel), to-
gether with the velocity field and the corresponding emis-
sion in the two spectral lines of C IV (154.8nm) and OV

(63.0 nm). It is seen that the condensation regions are ac-
companied by strong transient brightenings in both lines.
As the OV (63.0 nm) line is formed at higher tempera-
tures than the C IV (154.8nm) line, a small time delay
is observed between the occurrence of the brightenings in
the two lines. The wiggles in the path of the condensation
region are due to the strong deceleration of the blob by
the transition region plasma (cf. Sect. 4.5).

When the condensed plasma blob falls down the leg
of the loop, it compresses the underlying plasma, which
results in a transient temperature rise of the plasma un-
derneath and a strong brightening around the footpoint
of the loop when the plasma blob encounters the transi-
tion region. Fig. 14 shows the variation of the emission
in C IV (154.8nm) at the loop footpoints (z = 2 Mm and
z = 98Mm) as a function of time. The intensity from
this highly dynamic model run with Hm = 5Mm is scaled
by the respective intensity from the stable model run for
Hm = 6 Mm (cf. Fig. 3). This is done in order to high-
light the dynamics in the C IV emission. It is observed
that the intensity at the right footpoint (draining direc-
tion of the condensation region, lower panel) increases for
a short time by more than two orders of magnitude and
by more than one order of magnitude at the left footpoint.
The latter effect takes place because the rarefaction wave
following the falling condensation region pulls up plasma
from the lower transition region to higher temperatures
which leads to the strong transient brightening in the C IV

(154.8nm) line.

5. Comparison to observations and discussion

Several features of the numerical simulations presented
here are in good agreement with recent observations
from different instruments, so that we propose the
condensation-evaporation cycle as a possible common ex-
planation.

Let us briefly sum up the observational evidence
and its analysis: The TRACE observations of Schrijver
(2001) show strong transient brightenings in Lyα and
C IV (154.8nm), developing initially near the loop tops.
Thereafter cool plasma slides down on both sides of
the loops, forming clumps which move with velocities
of up to 100 km/s but show a downward acceleration of
80±30m/s2, significantly less than the solar surface grav-
ity. After a detailed analysis, Schrijver (2001) concluded
that the observed brightenings are due to the radiation
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Fig. 13. Formation of two condensation regions in a coronal loop for Hm = 2 Mm. The upper left plot shows the evolution of
temperature along the loop, the upper right plot shows the corresponding velocities. The lower left plot displays the emission
in C IV (154.8 nm), the lower right plot the emission in O V (63.0 nm.)

of relatively dense blobs of falling plasma which are “em-
bedded in more tenuous cool matter or in plasma at a
different temperature”. He argued that the reduced ac-
celeration may be caused by the cooling plasma under-
neath the radiating blobs which could slow down the fall.
Referring to the work of Mok et al. (1990), he suggested
that the observed catastrophic cooling could be explained
by a drastic and fast reduction of the heating scale height
which would result in a strong decrease of the heating at
the loop apex.

De Groof et al. (2004) analyzed a high cadence time
series of simultaneous EIT (30.4nm) and Big Bear Hα

data and found intensity variations in a coronal loop which
propagated from the top towards the footpoint. The mea-

sured speeds of the blobs are compatible with a free-fall
in the upper part of the loop but are significantly smaller
in the lower part of the loop. Testing different hypotheses
concerning the origin of the intensity variations, the au-
thors rejected slow magneto-acoustic waves as an expla-
nation for the observations. Instead, they favored flowing
plasma blobs to account for the observed intensity varia-
tions.

Our simulations strongly support catastrophic cooling
as the key mechanism to explain these sets of observations
and provide further insight into the physical processes. In
contrast to the work of Mok et al. (1990) we are able
to synthesize optically thin emission lines forming in the
transition region and corona, and can thus directly repro-
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Fig. 14. Relative intensity, IHm=5Mm/IHm=6 Mm, in C IV
(154.8 nm) at the left (upper panel) and right (lower panel)
footpoints.

duce the transient brightenings in, e.g., C IV (154.8nm).
We can also prove the suggestion of Schrijver (2001) that
the falling plasma blobs are decelerated by the underlying
plasma and obtain quantitative agreement for the acceler-
ation of the blobs. Furthermore, we find that this region
is strongly compressed by the falling condensation region
which leads to a strong transient brightening of the loop
footpoint.

The main novelty that our simulations provide, how-
ever, is the finding that catastrophic cooling is not nec-
essarily initiated by a sudden decrease of the heating or
the heating scale height. We support the presumption of
Schrijver (2001) that a “drastic and fast reduction of the
heating scale height suffices” to trigger the formation of
cool condensations. In fact, this is what is happening in
the initial phase of all dynamic loop simulations presented
here, when the heating scale height is instantaneously re-
duced. Moreover, we show that catastrophic cooling does
not have to be the result of a time-dependent heating scale
height, but can also result from a slowly evolving loss of
equilibrium at the loop apex as a natural consequence of
loop heating predominantly at the footpoints.

On the other hand, it is hardly possible to trigger
catastrophic cooling at all by just decreasing the amount
of heating if this decrease is not accompanied by a decrease
of the heating scale height (cf. Sect. 4.1).

A small heating scale height rather than a heating
function with time-dependent amplitude thus seems to
be the key element for catastrophic cooling. These state-
ments are important as they show that time-dependent
phenomena observed in coronal loops do not demand time-
dependent driving mechanisms (although many of them

Fig. 15. Evolution of mean temperature, 〈T 〉(t), using an in-
creased mechanical energy flux of Fm0 = c · 104 W/m2, for
four different damping lengths of the heating function: Hm =
2 Mm (dotted), Hm = 3 Mm (solid), Hm = 5 Mm (dashed),
Hm = 6 Mm (dash-dotted).

exist) but can also be the result of basic radiative or hy-
drodynamic instabilities.

The question has been raised whether a higher tem-
perature of the loops would significantly alter their evo-
lution. We have therefore carried out an additional set
of simulations where we increased the mechanical energy
flux to Fm0 = c · 104 W/m2 while keeping all other pa-
rameters constant. This results in a start model with
Tmax = 2.7MK and 〈T 〉 = 2.5MK and recurrently con-
densing loops with maximal temperatures of 〈T 〉max =
1.8 − 1.9MK. The evolution of the mean temperature of
these loop models is displayed in Fig. 15. It is seen that
the general behavior remains unchanged, in the sense that
loops with a heating scale height below a certain thresh-
old undergo periodic evolution. Compared to cooler loops
with a lower heating rate, the increased heating rate re-
sults in a slight reduction of this threshold value, which is
the expected result. It has to be kept in mind that the loop
length also significantly affects the maximal loop tempera-
ture so that longer loops reach much higher temperatures
for a given mechanical energy flux.

Comparing the results of the current model with ob-
servations, we have to stress that the observed blob
speeds are significantly smaller than the observed ones
and the periods are lower than the time scale estimated
by Schrijver (2001). However, as mentioned in Sect. 4.5,
new simulations for a L = 300Mm model loop (which
corresponds to the estimated length of the loop analyzed
by De Groof et al. (2004)) yields blob speeds of the order
of 100km/s and periods of up to several days. A detailed
comparison of these results with observational data is in
progress (Müller et al. 2004, in preparation).

In this model we make the implicit assumption that
the heating rate is not affected by the catastrophic cooling,
even though the density and gas pressure change signifi-
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cantly while the condensation sets in (cf., e.g., the average
pressure in Fig. 5 or the density in Figs. 6 and 7). However,
even during the condensation phase the plasma-β remains
below 0.03 when assuming a reasonable value of 10Gauss
for the magnetic field. Thus, throughout we deal with a
low-β plasma, where the magnetic field is presumably un-
perturbed by the plasma.

Therefore, when assuming a magnetically domi-
nated heating mechanism like flux-braiding (Galsgaard &
Nordlund 1996; Gudiksen & Nordlund 2002) we expect the
heating rate to remain constant (and on average decaying
exponentially with height), regardless of the dynamic evo-
lution of the plasma.

6. Summary

Our model calculations of coronal loops reproduce obser-
vations of catastrophic cooling and high-speed downflows,
using a very simple, time-independent heating function.
The non-linearity of the energy equation results in a loss
of equilibrium which triggers a highly dynamic loop evo-
lution. No external time-dependent driving mechanism
is necessary to explain rapid cooling and evacuation of
loops. Coronal loops can exhibit cyclic behavior, with a
wide range of periods, as well as irregular solutions. As
our code solves the non-equilibrium rate equations con-
sistently with the dynamic equations, the time-dependent
emission of optically thin spectral lines can be synthe-
sized and directly compared to observations giving a good
match to the observed properties of catastrophic cooling
of coronal loops.
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